
Package Manager
Bram Nijenkamp



What does our library landscape look like?

› You download them from whoever’s developers website.
› DataAccess.com/*
› vdf-guidance.com
› Github.com or others…
› Forum links…
› Even email!..
› And, many more...



Where do I leave them?

› A Libraries directory
› Local
› Global
› Git submodule



What is the problem with this?

› Hard to manage your projects
› Keep them updated, which doesn’t happen in most cases
› Where can I even find that update though?
› When will I ever get a notification on this unless I look?



Going even further

› Should you even update, won’t it break my whole 
product?

› You don’t have tests to verify the dependency on the library
› The library does not have any tests to verify it’s functionality in 

the first place

› So, always the “trust but verify” applies… and that’s 
what’s makes it hard.



How is this solved?

› By slowly creating a new library-based ecosystem, by 
developers, for developers!

› A tool that will help you;
› Manage your workspaces;
› Manage your libraries, and update them if you want to;
› Provide a central place for (OSS) library distribution



What does the sector look like?

› Npm (JavaScript, TypeScript)
› Cargo (Rust)

› Chocolatery, winget (Windows)
› Homebrew (Linux, MacOS)
› All the –nix stuff!



Goals

› Collect as many Dataflex packages in one place, enabling 
far easier distribution to end-users. 

› Allow end-users to download said packages in an easy and 
user-friendly way. 

› Allow packages to be automatically updated if required, 
without overwriting files the user may have changed 
themselves. 



This is what the package manager will do!

› It can install/remove libraries;
› From a global or local location on your own hard drive;
› From that central storage location that is somewhere in the 

cloud;
› By name e.g. DA/QuillEditor:1.0, DA/DFReports:latest
› Where you guys should be able to post your libraries for years to 

come
› From a version control system like any git-based service 

provider like GitHub



What are our priorities?

› First priority:
› Web Controls
› DLLs

› For later:
› COM components
› Tables/Migration & Templates



Docker-like notation

› {Repository}/{Package}{:version}

› Easy to use
› Both personal and public

› Shared access like for organizations

› Version layering
› Latest

› Promoted/Verified without repository



Security

› We automatically scan for viruses and malware!
› Happens every on every push.

› Verified publishers



That’s how df-cli (Concept) was born!

› Console only
› With a UI in the works

› Integrated in the Studio
› DAID



This is what the df-cli will do!

› It can generate all your workspace related files like .sws’, 
.ws’, .webconfigs, index.html’s.

› To accommodate for JavaScript requiring libraries.
› Will stay backwards compatible with your workspace files!

› And very important make sure (by checksum) that you 
didn’t change library behaviour, which you would 
otherwise depend on later

› And off course also for a sense of safety and stability



It might resemble something like NuGet



Underneath

› How does it configure my workspace information?
› Using a new df.json file (might change)
› Which abstract all information of your project to one file

› You can change your workspace information in that file
› Or, by interacting with it using df-cli or the incoming UI-version



Demo Time!



Thank you!
Are there any questions?


