
Regular Expressions

Mike Peat, Unicorn InterGlobal

So how did this happen?

› I'd promised Charlotte I'd do a presentation here at

Scanduc…

› However I was short of ideas for a topic…

› So Sture suggested I give do something on the new

Regular Expression facilities (RegEx) in DataFlex 25…

› But, but…

RegExs?
Why did it have to be RegExs?

Indianna Jones: Why Did It Have to Be Snakes?

Brief clip to promote the September 18 release of the Indiana Jones Collection on Blu-ray disc.

http://www.youtube.com/watch?v=ClwIj3x24Q4

I hate RegExs, Jock!
I hate 'em!

I Hate Snakes Jock - CC!

http://www.youtube.com/watch?v=fkaldvt3EOw

Snakes…

› In my youth I fell into a box of wriggling RegExs

› …and I've had an abiding horror of them ever since

› But as the resolute action hero you know me to be…

› I guess I'll have to overcome my fear, drop into the pit,

spray them with kerosene and set them on fire!

› So here goes…

Unix

› I first encountered RegEx in the mid-80s when I was learning

Unix

› I've used them since, in pretty simple ways, to do find, or

find-and-replace, in the vi text editor (or sed stream editor)

› And to filter the output of other commands such as ps with

grep (named for the g/re/p command in the ed line editor

which printed all matching lines)

› In spite of that, I've always considered RegEx black magic!

So what is RegEx?

› RegEx is essentially a string pattern-matching mechanism

› It has spawned several "dialects" in which to express the

"pattern" you want to match

› Of these Data Access has chosen the popular Perl

Compatible Regular Expressions - PCRE - library to build

into the DataFlex runtime

› They have provided a class: cRegEx, with properties and

methods you can use to find (and act on) matches in text

The RegEx class

› The property psExpression holds your regular expression
› Then the functions:

› Match and Substitute
› MatchAll and SubstituteAll
› MatchAllCallback and SubstituteAllExCallback
› MatchAllOffsets
› RMatch
› Split
› MatchAllGroups

› Carry out those operations on a string of passed text

So let's see some of those in action:

DEMO!

Th RegEx expressions

› As you can see from that monster EMail-address-
identifying-and-validating expression, writing
comprehensive RegEx can be quite challenging!

› (FYI: I copied it from https://emailregex.com/index.html
and it is the same one Harm uses in his Learning Center
course on RegEx. It is only claimed to be 99.99% effective
- it notes: there is no perfect email regex)

› So… now it is time to spray those RegExs with kerosene
and set them on fire…

› Let's look at writing our own
› First, the tools we have at our disposal…

https://emailregex.com/index.html
https://www.regular-expressions.info/email.html

RegEx matching syntax (PCRE version)
Symbol Matches

. (dot/period) any character (ex: \n)

ab "ab"

a|b "a" or "b" (logical or)

a* zero or more "a"s

a+ one or more "a"s

a? zero or one "a"

a{3} 3 "a"s

a{3,} 3 or more "a"s

a{3,9) 3 to 9 "a"s

\ escape special char

\d one digit

\D one non-digit

Symbol Matches

\s one whitespace

\S one non-whitespace

\w one "word" character

\W one non-word character

\n newline

\r carriage return

\t tab

\b word boundary

\B non-word boundary

[b-q] character in set (range)

[^b-q] char not in set

[\b] backspace

Symbol Matches

^ start of string

$ end of string

\< start of word

\> end of word

(...) capturing group

(?: ...) non-capturing group

(?<xyz>...) named group "xyz"

(?#...) comment

\0 null

\YYY octal char "YYY"

\xYY hex char "YY"

\cY ctrl-character "Y"

So to validate an email address…

› An email address is made up of three parts:
› the local part (mailbox name)
› an "@" sign
› the email domain, itself made up of:

› 1 or more subdomains, ending in dots (".")
› A top level domain (TLD)

› You can also have dots and other chars in the local part:
› M.Peat or M-Peat or m_peat - the complete list is:

.!#$%&'*+-/=?^_`{|}~

What we'll try

› We don't actually want to use the: "Firstname Surname
<email-address>" form so we won't allow for that

› The "local part" can only be a maximum of 64 characters,
so we can use the quantifier {1,64} on that

› The TLD cannot contain anything but letters and must be
at least 2 characters long; the longest at present is
"travelersinsurance", but we can accommodate any
length by using a quantifier of {2,}

What we'll try

› \w will cover most of what we want to allow in local and
subdomains and we can add to that as a range: [\w…] as
required (\w is very useful: all alphanums plus
underscore)

› (Note: you do not need to escape most special characters
in a [...] range)

› We can use word-boundaries (\b) to identify the start and
end of what we are looking for

› Each subdomain will be a series of 1-63 characters
followed by a dot, so we can make that a group with a
quantifier of {1,63} chars followed by \.

› However we have to take care with groups: (...)

What we'll try

› If we use a capturing group, MatchAllCallback will call its
callback function for the matches but also for any groups
it finds, so we need use a non-capturing group: (?:...)

› I've never come across an email address with more than
three subdomains, so let's call the limit on those 6 (the
actual limit is 125, but that's just silly!)

› There is always one, so we can use a quantifier of {1,6}

› I intend to use the "audience-debugger", so pay attention
and shout out when you see me go wrong!

So let's have a go!

(What could possibly go wrong?)

Clearer about RegEx?
› Our expression was: \b[\w.!#$%&'*+-

/=?^`{|}~]{1,64}\b@(?:\w{1,63}\.){1,6}[a-zA-Z]{2,}\b
› I hope that has left you a little less mystified by RegEx

expressions
› Personally I still consider them to mostly be a "write-only"

form of programming
› It is worth remembering, if you are faced with some specific

RegEx problem, that somebody somewhere might have
already solved it and documented that…

› Just Google it
› Or failing that, ask on Stack Overflow!

Thank you!

Are there any questions?

	Slide 1
	Slide 2: So how did this happen?
	Slide 3: RegExs? Why did it have to be RegExs?
	Slide 4: I hate RegExs, Jock! I hate 'em!
	Slide 5: Snakes…
	Slide 6: Unix
	Slide 7: So what is RegEx?
	Slide 8: The RegEx class
	Slide 9
	Slide 10: Th RegEx expressions
	Slide 11: RegEx matching syntax (PCRE version)
	Slide 12: So to validate an email address…
	Slide 13: What we'll try
	Slide 14: What we'll try
	Slide 15: What we'll try
	Slide 16
	Slide 17: Clearer about RegEx?
	Slide 18

