
cWebAppBusinessProcess

Peter Bragg

“I’m migrating my windows application to the web”

“I’m migrating my BUSINESS application to the web”

Our old friend the batch process

Browser Timeouts

› In web applications, a timeout occurs when the client
(usually a web browser) makes a request to the server but
does not receive a response within a specified time limit.

› Timeouts help prevent the browser from waiting
indefinitely and improve user experience by handling slow
or unresponsive servers gracefully.

› Default is 90 seconds with IIS.

Possible Solutions …

Solution?

1. We cross our fingers and hope that our process takes less
than 90 seconds.
› 90 seconds is a long time to wait.

2. We up the timeout limit to something greater than 90
seconds.
› Does this make for a good user experience?

› How big is big enough?

› As said. 90 seconds is already a long time to wait.

Solution?

3. OnReleaseProcess
› Browser gets a timely response, but

› Process is locked out of the pool and unavailable for handling
the next request.

4. Start a background (non-web) process
› Runprogram Shell Background

› Writes progress to database (or other)

› cWebTimer in WebApp monitors progress and reports back to
the UI (end-user)

http://localhost/donorflex/Index.html#Home/HomeDonors/Don01751s/Don01751a

Solution?

5. Use cWebBusinessProcess? Oh. Obsolete. Ho-hum.

Could we create our own?

cWebAppBusinessProcess

Agenda

› Basic Requirements.

› Challenges.

› Procedure Callback.

› Examples.

› When and when not to use.

› What next …?

Basic Requirements

cWebAppBusinessProcess Requirements

› Status Panel.
› Browser receives update responses. Timeouts avoided

› End user is kept informed of progress

› Familiar Interface.
› Send DoProcess

› Code OnProcess

› Built-in Error handling.
› Procedure OnError

› Get Error_Count …

cWebAppBusinessProcess Requirements

Send DoProcess of …

Procedure OnProcess

 // Perform some looping task

End_Procedure

WebApp.exe

cWebAppBusinessProcess Requirements

› DoProcess is called. Process is started.

› OnProcess deals with first block of records.

› We callback to the client with update on progress.

› Client is updated (timeout avoided). Back to the server.

› OnProcess deals with next block of records.

› We callback to the client with update of progress.

› Client is updated (timeout avoided). Back to the server.

› Until done.

Process Pooling

cWebAppBusinessProcess Challenges

› Process Pooling.

› And it was all going so well. (Well, up to and including the
first update of our status panel).

› For this to work we’re going to need a sychronisation
process/framework.

› If only there was something out-the-box that could help?

Procedure Callback

Procedure Callback

‹ OnProcess?

‹ DoProcess?

cWebAppBusinessProcess

› Status Panel.
› Make our class a subclass of cWebModalDialog.

› Add cWebLabel, cWebProgressBar and cWebButton.

cWebAppBusinessProcess

Procedure DoProcess Handle hoReturnObject // Entry point

End_Procedure

› Familiar Interface – Methods and Events

Procedure OnProcess String ByRef sStatus // Called for each row/record

End_Procedure

Procedure OnSeedProcess Variant ByRef vSeedValue Boolean ByRef bComplete

End_Procedure

Function GetProgress Variant vSeedProcess // Only when showing Progress Bar

Function_Return 0 // 1 to 100 (percentage)

End_Function

cWebAppBusinessProcess

{ Category = "Behavior" }

Property Boolean pbAllowCancel True

› Familiar Interface – Properties

{ Category = "Behavior" }

Property Integer piFeedbackFrequency 1 // How many OnProcess calls each trip

{ Category = "Behavior" }

Property Boolean pbProgressBar True

cWebAppBusinessProcess

Procedure OnError Integer iErrNum Integer iErrLine String sErrMsg

End_Procedure

› Built-in Error Handling

Function Error_Count Returns Integer

End_Function

Examples

../../../Program Files/DataFlex 24.0/Bin64/Studio.exe

cWebAppBusinessProcess

Procedure End_Process

Send Ok // Calls NotifyCloseModalDialog (OnCloseModalDialog)

End_Procedure

› Miscellaneous

Procedure OnCloseModalDialog Handle hoWebAppBusinessProcess

Integer iErrors

Get Error_Count of hoWebAppBusinessProcess to iErrors

// Report as required

End_Procedure

cWebAppBusinessProcess Useage

› Remember – we’re trying to avoid timeouts.

› Play with piFeedbackFrequency to strike the balance
between performance and “waiting”.

› Avoid “big” SQL updates that cannot provide feedback.

› Best used when:
› Looping through records.

› Reading in files.

› Performing lots of small admin tasks, e.g. deleting cached files.

› IOW lots of doing the same little thing(s).

What Next?

› Erm. No plans, really.

› Exercise in understanding Procedure Callback.

› I will update class and examples on Forum (and make
available with presentation slides).

› By all means someone pick it up and run with it.

› But …

› Data Access? Given we already have Procedure Callback …

Thank you!

Are there any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Browser Timeouts
	Slide 6
	Slide 7: Solution?
	Slide 8: Solution?
	Slide 9: Solution?
	Slide 10
	Slide 11
	Slide 12: Agenda
	Slide 13
	Slide 14: cWebAppBusinessProcess Requirements
	Slide 15: cWebAppBusinessProcess Requirements
	Slide 16: cWebAppBusinessProcess Requirements
	Slide 17
	Slide 18: cWebAppBusinessProcess Challenges
	Slide 19
	Slide 20: Procedure Callback
	Slide 21: cWebAppBusinessProcess
	Slide 22: cWebAppBusinessProcess
	Slide 23: cWebAppBusinessProcess
	Slide 24: cWebAppBusinessProcess
	Slide 25
	Slide 26: cWebAppBusinessProcess
	Slide 27: cWebAppBusinessProcess Useage
	Slide 28: What Next?
	Slide 29

