
Practical SQL for DataFlex: A Rapid Overview

Johan Broddfelt

Disclaimer

› SQL opens a can of worms to play with. Thread with care…
› Update and read data outside DD rules

› SQL-injection and other security concerns

› Keep the applications business rules in mind

Connect DD:s to SQL-server

Information in code

./data/DFConnId.ini

[connection1]

id=BestBeers

driver=MSSQLDRV

connection=SERVER=MyPC\SQLEXPRESS02;DATABASE=BestBeers;Encrypt=No;TrustServerCertificate=no

trusted_connection=yes

./data/beer.int TopBeersFlx.src

--- ---

DRIVER_NAME MSSQLDRV

SERVER_NAME DFCONNID=BestBeers

DATABASE_NAME Beer

SCHEMA_NAME dbo

Connect other SQL-queries to DB

MainSqlConnection.pkg

TopBeersFlx.src
Old method
Object oSQLHandler is a cSQLHandleManager

// From DFAllEnt.pkg > cConnection.pkg > sql.pkg

Move Self to hoSQLMngr

End_Object

Identity column

DataDictionary configuration Table configuration

Old vs New SQL-commands in DataFlex

Connect other SQL-queries to DB

Using the Record Buffer
Clear RouteStore

Move iStoreId to RouteStore.StoreId

Move iRouteId to RouteStore.RouteId

Find EQ RouteStore by Index.1

If (Found) Begin

Move dtNow to RouteStore.PickupReportSent

SaveRecord RouteStore

End

New vs Old SQL-methods

Using new SQL functions
Include_Text SQL/UpdateRouteStoreExported.sql as C_RSExported
Send SQLPrepare of ghoSQLExecutor C_RSExported
Send SQLSetParameter of ghoSQLExecutor "storeId" iStoreId
Send SQLSetParameter of ghoSQLExecutor "routeId" iRouteId
Send SQLExecute of ghoSQLExecutor

UpdateRouteStoreExported.sql
UPDATE [dbo].[RouteStore]
SET PickupReportSent = CURRENT_TIMESTAMP
WHERE storeId = ${storeId}
AND routeId = ${routeId}

Using old SQL functions
Handle hoSQLMngr hdbc hStmt
Object oSQLHandler is a cSQLHandleManager

Move Self to hoSQLMngr
End_Object

Get SQLFileConnect of hoSQLMngr RouteStore.File_number to hdbc
Get SQLOpen of hdbc to hStmt

Move @"UPDATE [dbo].[RouteStore]
SET PickupReportSent = CURRENT_TIMESTAMP

WHERE storeId = " + iStoreId + "
AND routeId = " + iRouteId to sQuery

Send SQLExecDirect of hStmt sQuery

Send SQLClose of hstmt
Send SQLDisconnect of hdbc

// The following methods in the old that is not working in the new version
SQLFetch and SQLColumnValue

Include SQL-file

Using new SQL functions
Include_Text SQL/UpdateRouteStoreExported.sql as C_RSExported
Send SQLPrepare of ghoSQLExecutor C_RSExported
Send SQLSetParameter of ghoSQLExecutor "storeId" iStoreId
Send SQLSetParameter of ghoSQLExecutor "routeId" iRouteId
Send SQLExecute of ghoSQLExecutor

UpdateRouteStoreExported.sql
UPDATE [dbo].[RouteStore]
SET PickupReportSent = CURRENT_TIMESTAMP
WHERE storeId = ${storeId}
AND routeId = ${routeId}

Using old SQL functions
Handle hoSQLMngr hdbc hStmt
Object oSQLHandler is a cSQLHandleManager

Move Self to hoSQLMngr
End_Object

Get SQLFileConnect of hoSQLMngr RouteStore.File_number to hdbc
Get SQLOpen of hdbc to hStmt

Move @"UPDATE [dbo].[RouteStore]
SET PickupReportSent = CURRENT_TIMESTAMP

WHERE storeId = " + iStoreId + "
AND routeId = " + iRouteId to sQuery

Send SQLExecDirect of hStmt sQuery

Send SQLClose of hstmt
Send SQLDisconnect of hdbc

// The following methods in the old that is not working in the new version
SQLFetch and SQLColumnValue

Risk for SQL-injection

Using new SQL functions
Include_Text SQL/UpdateRouteStoreExported.sql as C_RSExported
Send SQLPrepare of ghoSQLExecutor C_RSExported
Send SQLSetParameter of ghoSQLExecutor "storeId" iStoreId
Send SQLSetParameter of ghoSQLExecutor "routeId" iRouteId
Send SQLExecute of ghoSQLExecutor

UpdateRouteStoreExported.sql
UPDATE [dbo].[RouteStore]
SET PickupReportSent = CURRENT_TIMESTAMP
WHERE storeId = ${storeId}
AND routeId = ${routeId}

Using old SQL functions
Handle hoSQLMngr hdbc hStmt
Object oSQLHandler is a cSQLHandleManager

Move Self to hoSQLMngr
End_Object

Get SQLFileConnect of hoSQLMngr RouteStore.File_number to hdbc
Get SQLOpen of hdbc to hStmt

Move @"UPDATE [dbo].[RouteStore]
SET PickupReportSent = CURRENT_TIMESTAMP

WHERE storeId = " + iStoreId + "
AND routeId = " + iRouteId to sQuery

Send SQLExecDirect of hStmt sQuery

Send SQLClose of hstmt
Send SQLDisconnect of hdbc

// The following methods in the old that is not working in the new version
SQLFetch and SQLColumnValue

Get SQLEscapedStr iStoreId to iStoreId // Changes ' to ''
Get SQLEscapeLikeWildcards iStoreId to iStoreId // Changes % to \%
Get SQLEscapedStr iRouteId to iRouteId // Changes ' to ''
Get SQLEscapeLikeWildcards iRouteId to iRouteId // Changes % to \%

Move @"UPDATE [dbo].[RouteStore]
SET PickupReportSent = CURRENT_TIMESTAMP

WHERE storeId = " + iStoreId + "
AND routeId = " + iRouteId to sQuery

// This does both SQLEscapedStr and SQLEscapeLikeWildcards
Get SQLStrLike (RefTable(RouteStore.storeId)) iStoreId to sFilter

Less code to maintain

Using new SQL functions
Include_Text SQL/UpdateRouteStoreExported.sql as C_RSExported
Send SQLPrepare of ghoSQLExecutor C_RSExported
Send SQLSetParameter of ghoSQLExecutor "storeId" iStoreId
Send SQLSetParameter of ghoSQLExecutor "routeId" iRouteId
Send SQLExecute of ghoSQLExecutor

UpdateRouteStoreExported.sql
UPDATE [dbo].[RouteStore]
SET PickupReportSent = CURRENT_TIMESTAMP
WHERE storeId = ${storeId}
AND routeId = ${routeId}

Using old SQL functions
Handle hoSQLMngr hdbc hStmt
Object oSQLHandler is a cSQLHandleManager

Move Self to hoSQLMngr
End_Object

Get SQLFileConnect of hoSQLMngr RouteStore.File_number to hdbc
Get SQLOpen of hdbc to hStmt

Move @"UPDATE [dbo].[RouteStore]
SET PickupReportSent = CURRENT_TIMESTAMP

WHERE storeId = " + iStoreId + "
AND routeId = " + iRouteId to sQuery

Send SQLExecDirect of hStmt sQuery

Send SQLClose of hstmt
Send SQLDisconnect of hdbc

// The following methods in the old that is not working in the new version
SQLFetch and SQLColumnValue

Constant name need to be unique

Using new SQL functions
Include_Text SQL/UpdateRouteStoreExported.sql as C_RSExported
Send SQLPrepare of ghoSQLExecutor C_RSExported
Send SQLSetParameter of ghoSQLExecutor "storeId" iStoreId
Send SQLSetParameter of ghoSQLExecutor "routeId" iRouteId
Send SQLExecute of ghoSQLExecutor

UpdateRouteStoreExported.sql
UPDATE [dbo].[RouteStore]
SET PickupReportSent = CURRENT_TIMESTAMP
WHERE storeId = ${storeId}
AND routeId = ${routeId}

Using old SQL functions
Handle hoSQLMngr hdbc hStmt
Object oSQLHandler is a cSQLHandleManager

Move Self to hoSQLMngr
End_Object

Get SQLFileConnect of hoSQLMngr RouteStore.File_number to hdbc
Get SQLOpen of hdbc to hStmt

Move @"UPDATE [dbo].[RouteStore]
SET PickupReportSent = CURRENT_TIMESTAMP

WHERE storeId = " + iStoreId + "
AND routeId = " + iRouteId to sQuery

Send SQLExecDirect of hStmt sQuery

Send SQLClose of hstmt
Send SQLDisconnect of hdbc

// The following methods in the old that is not working in the new version
SQLFetch and SQLColumnValueMove C_RSExported to sQuery

Send SQLPrepare of ghoSQLExecutor sQuery

Large queries (obsolete)

Fixing my mistake

Better structure

WARNING!!!

Move C_RSExported to sQuery
Move (Replace('__sStoreFilter__', sQuery, sStoreFilter)) to sQuery
Send SQLPrepare of ghoSQLExecutor sQuery

Using the query builder

Get data into result with ARRAY

String[] aResult

Include_Text SQL/SelectBeer.sql as C_RSExported
Send SQLPrepare of ghoSQLExecutor C_RSExported
Get SQLExecute of ghoSQLExecutor to aResult

Move 0 to iRow
While (iRow < SizeOfArray(aResult))
 Move aResult[iRow].[0] to aSuggestions[iRow].sRowId
 Move aResult[iRow].[1] to aSuggestions[iRow].aValues[0]
 Increment iRow
Loop

Get data into result with STRUCT

tBeer[] aResult

Include_Text SQL/SelectBeer.sql as C_RSExported
Send SQLPrepare of ghoSQLExecutor C_RSExported
Get SQLExecute of ghoSQLExecutor to aResult

Move 0 to iRow
While (iRow < SizeOfArray(aResult))
 Move aResult[iRow].iid to aSuggestions[iRow].sRowId
 Move aResult[iRow].sbeer to aSuggestions[iRow].aValues[0]
 Increment iRow
Loop

Struct tBeer
{ Name="id" }
Integer iid
{ Name="beer" }
String sbeer

End_Struct

Basic queries

INSERT INTO [table]
([column1], [column2])
VALUES (value1a, value2a) , (value1b, value2b) , (value1c, value2c)…

UPDATE [table]
SET [column1]=value1,
 [column2]=value2
WHERE column3=value3

SELECT [column1], [column2]
FROM [table]
WHERE column3=value3

DELETE [table]
WHERE column3=value3

Samples of queries

SQL/InsertBrand.sql

SQL/SelectBrand.sqlSQL/InsertBeerCategory.sql

SQL/TruncateAll.sql

Sorting and filters

IIF([Beer].[price]<5, 'CHEAP', 'PRICY') AS cost

IIF([Beer].[price]<5, 'CHEAP',
IIF([Beer].[price]<5, 'FAIR’,
 'PRICY')) AS cost

Aggregate queries

ORDER BY brand
ORDER BY [Brand].[id]
ORDER BY ppa

Constraints SQL-injection risk

Avoid writing you own SQL-queries in filters.
Always use the SQLEscapedStr and SQLEscapeLikeWildcards if you need to write some custom query
that introduces SQL-injection possibilities.

Get SQLStrLike (RefTable(beer.name)) sf.sText to sFilter // Does all below for you
// Get SQLEscapedStr sf.sText to sf.sText // Changes ' to ''
// Get SQLEscapeLikeWildcards sf.sText to sf.sText // Changes % to \%
// Move (" [name] LIKE '%" + sf.sText + "%' ") to sFilter // Only running this opens for SQL-injection

"name" LIKE N'%Ams%'

"name" LIKE N'%Ams%' OR "price" < 5 OR "name" LIKE N'%Ams%’

You could try just typing ' in the form to see if it fails in order to get an indication if it can be hacked.
_ and % area also special characters where _ represents any character. B_ll will return values for both
Ball and Bell and % is wildcard in the beginning or ending of the string.

EXISTS instead of JOIN in Constraints

SELECT beer.name, beer.brand_id, brand.name AS brand
FROM beer
LEFT JOIN brand
ON beer.brand_id = brand.id
WHERE brand.name LIKE '%beer%'

SELECT beer.name, beer.brand_id
FROM beer
WHERE EXISTS(SELECT name
 FROM brand
 WHERE name LIKE '%beer%'
 AND id = beer.brand_id)

Sorting data in Constraint

Set peDbGridType to gtAllData // Is needed to allow DF to sort in the view and not based on indexes

Then we sort by using WebSet piSortColumn of oList to COLUMN_IDX
If (sf.sSorting = 'az_brand') WebSet piSortColumn of oList to 0
If (sf.sSorting = 'az_beer') WebSet piSortColumn of oList to 1
If (sf.sSorting = 'az_price') WebSet piSortColumn of oList to 2
If (sf.sSorting = 'az_abv') WebSet piSortColumn of oList to 3
If (sf.sSorting = 'ppa') WebSet piSortColumn of oList to 6

Compare with ORDER BY used in regular SQL-query
If (sf.sSorting = 'az_brand') Move (sFilter + ' ORDER BY brand ') to sFilter
If (sf.sSorting = 'az_beer') Move (sFilter + ' ORDER BY beer ') to sFilter
If (sf.sSorting = 'az_price') Move (sFilter + ' ORDER BY price ') to sFilter
If (sf.sSorting = 'az_abv') Move (sFilter + ' ORDER BY abv ') to sFilter
If (sf.sSorting = 'ppa') Move (sFilter + ' ORDER BY ppa ') to sFilter

Methods in SQL

Aggregators used with GROUP BY
MAX, MIN, AVG, ABS, COUNT, STRING_AGG (GROUP_CONCAT in MySQL)

Functions
CONCAT, LEFT, RIGHT, SUBSTRING, GETDATE, LEN

Manipulation
CAST, CONVERT, FORMAT, REPLACE, UNICODE, UPPER, LOWER, ROUND, FLOOR

Comparing
DATEDIFF, DIFFERENCE, SOUNDEX, IIF, CASE/WHEN/THEN/END

Structure
(INNER, LEFT, RIGHT, OUTER) JOIN ON, EXISTS, UNION

Resources

Resources
https://learn.microsoft.com/en-us/sql/sql-server/educational-sql-resources
https://dev.mysql.com/doc/refman/9.0/en/

AI is also really good at creating queries and suggesting solutions

https://learn.microsoft.com/en-us/sql/sql-server/educational-sql-resources
https://dev.mysql.com/doc/refman/9.0/en/

Thank you!

Are there any questions?

	Slide 1
	Slide 2: Disclaimer
	Slide 3: Connect DD:s to SQL-server
	Slide 4: Information in code
	Slide 5: Connect other SQL-queries to DB
	Slide 6: Identity column
	Slide 7
	Slide 8: Connect other SQL-queries to DB
	Slide 9: New vs Old SQL-methods
	Slide 10: Include SQL-file
	Slide 11: Risk for SQL-injection
	Slide 12: Less code to maintain
	Slide 13: Constant name need to be unique
	Slide 14: Large queries (obsolete)
	Slide 15: Fixing my mistake
	Slide 16: Better structure
	Slide 17: WARNING!!!
	Slide 18: Using the query builder
	Slide 19: Get data into result with ARRAY
	Slide 20: Get data into result with STRUCT
	Slide 21: Basic queries
	Slide 22: Samples of queries
	Slide 23: Sorting and filters
	Slide 24: Aggregate queries
	Slide 25: Constraints SQL-injection risk
	Slide 26: EXISTS instead of JOIN in Constraints
	Slide 27: Sorting data in Constraint
	Slide 28: Methods in SQL
	Slide 29: Resources
	Slide 30

